Stereo-selective conversion of mandelonitrile to (R)-(−)-mandelic acid using immobilized cells of recombinant Escherichia coli
نویسندگان
چکیده
Immobilized cells of a recombinant Escherichia coli expressing nitrilase from Pseudomonas putida were used to catalyze the hydrolysis of mandelonitrile (2hydroxy-2-phenylacetonitrile) to (R)-(-)-mandelic acid. The cells had been immobilized by entrapment in an alginate matrix. Conditions for the hydrolysis reaction were optimized in shake flasks and in a packed bed reactor. In shake flasks the best conditions for the reaction were a temperature of 40 C, pH 8, biocatalyst bead diameter of 4.3 mm, sodium alginate concentration in the gel matrix of 2 % (w/v, g/100 mL), a cell dry mass concentration in the bead matrix of 20 mg/mL, an initial substrate concentration of 50 mM and a reaction time of 60 min. Under these conditions, the conversion of mandelonitrile was nearly 95 %. In the packed bed reactor, a feed flow rate of 20 mL/ h at a substrate concentration of 200 mM proved to be the best at 40 C, pH 8, using 4.3 mm beads (2 % w/v sodium alginate in the gel matrix, 20 mg dry cell concentration per mL of gel matrix). This feed flow rate corresponded to a residence time of 0.975 h in the packed bed.
منابع مشابه
Discovery and characterization of a highly efficient enantioselective mandelonitrile hydrolase from Burkholderia cenocepacia J2315 by phylogeny-based enzymatic substrate specificity prediction
BACKGROUND A nitrilase-mediated pathway has significant advantages in the production of optically pure (R)-(-)-mandelic acid. However, unwanted byproduct, low enantioselectivity, and specific activity reduce its value in practical applications. An ideal nitrilase that can efficiently hydrolyze mandelonitrile to optically pure (R)-(-)-mandelic acid without the unwanted byproduct is needed. RES...
متن کاملNitrilase from Pseudomonas fluorescens EBC191: cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme.
The gene encoding an enantioselective arylacetonitrilase was identified on a 3.8 kb DNA fragment from the genomic DNA of Pseudomonas fluorescens EBC191. The gene was isolated, sequenced and cloned into the L-rhamnose-inducible expression vector pJOE2775. The nitrilase was produced in large quantities and purified as a histidine-tagged enzyme from crude extracts of L-rhamnose-induced cells of Es...
متن کاملConstruction and application of variants of the Pseudomonas fluorescens EBC191 arylacetonitrilase for increased production of acids or amides.
The arylacetonitrilase from Pseudomonas fluorescens EBC191 differs from previously studied arylacetonitrilases by its low enantiospecificity during the turnover of mandelonitrile and by the large amounts of amides that are formed in the course of this reaction. In the sequence of the nitrilase from P. fluorescens, a cysteine residue (Cys163) is present in direct neighborhood (toward the amino t...
متن کاملDiscovery of a novel (R)-selective bacterial hydroxynitrile lyase from Acidobacterium capsulatum
Hydroxynitrile lyases (HNLs) are powerful carbon-carbon bond forming enzymes. The reverse of their natural reaction - the stereoselective addition of hydrogen cyanide (HCN) to carbonyls - yields chiral cyanohydrins, versatile building blocks for the pharmaceutical and chemical industry. Recently, bacterial HNLs have been discovered, which represent a completely new type: HNLs with a cupin fold....
متن کاملEffects of ackA, pta and poxB inhibition by antisense RNA on acetate excretion and recombinant beta interferon expression in Escherichia coli
Introduction: Escherichia coli (E.coli) is one of the most widely used hosts for the production of recombinant proteins. The main problem in getting high product yields and productivity is the accumulation of acetic acid (acetate) as an unwanted metabolic by-product. In this study, an antisense-based strategy as a metabolic engineering approach was employed to hamper the acetate excretion probl...
متن کامل